Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Fisiología de la ventilación mecánica no invasiva

Physiology of non-invasive mechanical ventilation



Abrir | Descargar


Sección
Reportes de casos

Cómo citar
Fisiología de la ventilación mecánica no invasiva.
rev. colomb. neumol. [Internet]. 2016 Mar. 30 [cited 2024 Dec. 7];28(1):24-32. Disponible en: https://doi.org/10.30789/rcneumologia.v28.n1.2016.161

Dimensions
PlumX
Licencia

Ninguna publicación, nacional o extranjera, podrá reproducir ni traducir sus artículos ni sus resúmenes sin previa autorización escrita del editor; sin embargo  los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna.

Fabio Andrés Varón V., MD.
    Ángela María Giraldo M., MD.

      Fabio Andrés Varón V., MD.,

      Jefe Unidad de Cuidado Intensivo y Programa de Trasplante Pulmonar, Fundación Neumológica Colombiana. Bogotá, Colombia.


      Ángela María Giraldo M., MD.,

      Fellow de Neumología, Fundación Neumológica Colombiana. Universidad de La Sabana. Bogotá, Colombia.


      La ventilación mecánica no invasiva se refiere a la entrega de ventilación a los pulmones utilizando técnicas que no requieren una vía aérea endotraqueal. La aplicación de presión positiva en ventilación no invasiva se remonta a la década de 1930, cuando los estudios de Barach demostraron que la presión positiva continua en la vía aérea, podría ser útil en el tratamiento del edema pulmonar agudo. Pero solo hasta 1980 se desarrollaron investigaciones administrando presión positiva a través de una boquilla con lo cual se obtuvieron resultados positivos con descenso en los niveles de PaCO2 y mejoría de la oxigenación en pacientes con EPOC y ASMA, sin embargo los resultados no fueron homogéneos por lo que se desestímulo su uso. Hoy se conoce que esta disparidad en los resultados se debió al corto tiempo de la ventilación mecánica no invasiva, de tan sólo 10 a 15 minutos tres o cuatro veces al día, demasiado breve para obtener buenos resultados. En paralelo, esta se utilizó en pacientes con enfermedad neuromuscular en el Centro de Rehabilitación de Goldwater en Nueva York, pero el uso de diferentes interfaces hizo que la técnica no presentara una adecuada adaptación en el grupo de pacientes (2). Sólo hasta 1985 se produjo una proliferación de su uso con la introducción de presión positiva continua en la vía aérea para el tratamiento de la apnea obstructiva del sueño. Hoy se han confirmado los beneficios en diversas entidades clínicas (3).


      Visitas del artículo 7497 | Visitas PDF 15319


      Descargas

      Los datos de descarga todavía no están disponibles.
      1. Barach AL, Martin J, Eckman M. Positive pressure respiration and its application to the treatment of acute pulmonary edema. Ann Intern Med. 1938;12:754-95.
      2. Alba A, Khan A, Lee M. Mouth IPPV for sleep. Rehabilitation gazette. 1984;24:47-9.
      3. Bach JR, Alba AS. Management of chronic alveolar hypoventilation by nasal ventilation. Chest. 1990;97:52–72.
      4. ThokalaP, Goodacre S, sala M , Penn-Ashman J. Cost-effectiveness of out-of-hospital continuous positive airway pressure for acute respiratory failure. Ann Emerg Med. 2015:196-204.
      5. Hedly-Whyte J, Burgess GE, Feeley TW, Miller MG. Applied physiology of respiratory care. Chapter 2: Effect of controlled ventilation on the lungs and cardiovascular system. Boston: Little, Brown and Company; 1976. p. 13-35.
      6. Suter PM, Fairley HB, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284-9.
      7. Kallet RH, Campbell AR, Dicker RA. The effects of tidal volume demand on work of breathing during lung protective ventilation in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2006;34(1):8-14.
      8. Flick GR, Bellamy PE. Diaphragmatic contraction during assisted mechanical ventilation. Chest. 1989;96(1):130-5.
      9. Colgan FJ, Barrow RE, Fanning GL. Constant positive-pressure breathing and cardiorespiratory function. Anesthesiology. 1971;34:145-51.
      10. Morgan BC, Martin WE, Hornbein TF, Crawford EW. Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology. 1966;27(5):584-90.
      11. Dreyfuss D, Soler P, Basset G. Respective effects of high airway pressure, high tidal volumen and positive end expiratory pressure. Am Rev Resp Dis. 1988;137:1159-64.
      12. Shaffer TH, Wolfson MR, Panitch HB. Airway structure, function and development in health and disease. Paediart Anaesth. 2004;14:3-14.
      13. Ferris Bg, Mead J, Opie LH. Partitioning of respiratory flow resistance in man. J Appl Physiol. 1964;19:653-8.
      14. Bryan AC, Bentiglovio LG, Beerel F. Factors affecting regional distribution of ventilation and perfusion in the lung. J Appl Physiol. 1964; 19: 395-402.
      15. Carrey Z, Gottfried SB, Levy RD. Ventilatory muscle support in respiratory failure with nasal positive pressure ventilation. Chest. 1990;97(1):150-8.
      16. Winck JC, Vitacca M, Morais A, Barbano L, Porta R, Teixeira-Pinto A, Ambrosino N. Tolerance and physiologic effects of nocturnal mask pressure support vs. proportional assist ventilation in chronic ventilatory failure. Chest. 2004;126(2):382-8.
      17. Girault C, Richard J-C, Chevron V, Tamion F, Pasquis P, Leroy J, Bonmarchand G. Comparative physiologic effects of noninvasive assist-control and pressure support ventilation in acute hypercapnic respiratory failure. Chest. 1997;111(6):1639-48.
      18. Waldhorn RE. Nocturnal nasal intermittent positive pressure ventilation with bi-level positive airway pressure (BiPAP) in respiratory failure. Chest. 1992;101(2):516-21.
      19. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151(6):1799-806.
      20. Toussaint M, Soudan P, Kinnear W. Effect of noninvasive ventilation on respiratory muscle loading and endurance in Duchenne patients. Thorax. 2008;63(5):430-4.
      21. L’Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172(9):1112-8.
      22. deLucas P, Tarancon C, Puente L, Rodriguez C, Tatay E, Monturiol JM. Nasal continuous positive airway pressure in patients with COPD in acute respiratory failure. Chest. 1993;104(6):1694-7.
      23. Renston JP, DiMarco AF, Supinski GS. Respiratory muscle rest using nasal BiPAP ventilation in patients with stable severe COPD. Chest .1994;105(4):1053-60.
      24. Katz JA, Marks JD. Inspiratory work with and without continuous positive airway pressure in patients with acute respiratory failure. Anesthesiology. 1985;63(6):598-607.
      25. Sydow M, Golish W, Buscher H, Zinserling J, Crozier TA, Burchardi H. Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intensive Care Med 1995;21(11):887-95.
      26. Nava S, Ambrosino N, Rubini F, Fracchia C, Rampulla C, Torri G, Calderini E. Effect of nasal pressure support ventilation and external PEEP on diaphragmatic activity in patients with severe stable COPD. Chest. 1993;103(1):143-50.
      27. Mehta S, Jay GD, Woolard RH, Hipona RA, Connolly EM, Cimini DM, Drinkwater JH, Hill NS. Randomized prospective trial of bilevel versus continuous positive airway pressure in acute pulmonary edema. Crit Care Med. 1997;25(4):620-8.
      28. Wysocki M, Richard JC, Meshaka P. Noninvasive proportional assist ventilation compared with noninvasive pressure support ventilation in hypercapnic acute respiratory failure. Crit Care Med 2002;30(2):323-9.
      29. Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21(11):871-9.
      30. Racca F, Appendini L, Gregoretti C. Effectiveness of mask and helmet interfaces to deliver noninvasive ventilation in a human model of resistive breathing. J Appl Physiol. 2005;99(4):1262-71.
      31. Ambrosino N, Nava S, Bertone P, Fracchia C, Rampulla C. Physiologic evaluation of pressure support ventilation by nasal mask in patients with COPD. Chest. 1992;101(2):385-91.
      32. Porta R, Vitacca M, Clini E, Ambrosino N. Physiological effects of posture on mask ventilation in awake stable chronic hypercapnic COPD patients. Eur Resp J. 1999;14(3):517-22.
      33. Kilger E, Briegel J, Haller M, Frey L, et al. Effects of noninvasive positive pressure ventilatory support in non-COPD patients with acute respiratory insufficiency after early extubation. Intensive Care Med. 1999;25(12):1374-80.
      34. Ambrosino N, Nava S, Torbiki A, Riccardi G, Fracchia C, Opasich C, Rampulla C. Haemodynamic effects of pressure support and PEEP ventilation by nasal route in patients with stable chronic obstructive pulmonary disease. Thorax. 1993;48(5):523-8.
      35. Bersten AD, Holt AW, Vedig AE, Skowronski GA, Baggoley CJ. Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med. 1991;325(26):1825-30.
      36. Rasanen J, Heikkila J, Downs J, Nikki P, Vaisanen I, Viitanen A. Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol. 1985;55(4):296-300.
      37. Masip J, Betbese AJ, Paez J, et al. Noninvasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema: a randomized trial. Lancet. 2000;356(9248):2126-32.
      Sistema OJS 3.4.0.7 - Metabiblioteca |