Immunohistochemistry and genomic architecture in lung cancer: a perspective from chest surgery
Inmunohistoquímica y arquitectura genómica en el cáncer pulmonar: perspectiva desde la cirugía de tórax
Ninguna publicación, nacional o extranjera, podrá reproducir ni traducir sus artículos ni sus resúmenes sin previa autorización escrita del editor; sin embargo los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna.
Show authors biography
Lung cancer represented the second leading cause of cancer and the leading cause of cancer mortality in the United States by 2020. In 2016, 538,000 lung cancer cases were reported, with 80,775 men and 68,096 women dying in the same year. The five-year survival rate of 15.6 % in 2011 rose to 19.4 % in 2019, probably associated with a decrease in smokers, mainly due to advances in targeted pharmacological therapies and the development of immunotherapies.
Pulmonary adenocarcinoma, particularly in young, nonsmoking women, has shown an increased incidence. However, survival in this population has had significant advances associated with a better, updated understanding of identifiable biological and genetic mechanisms in lung cancer and a better classification of these tumors into types and subtypes.
Numerous advances in immunohistochemical techniques (in the diagnosis and classification of lung cancer and selection of cases for molecular analysis) and the knowledge of genomic alterations associated with various lung cancer types have changed their treatment approach, especially in advanced stages of tumorigenesis. Oncogenes and tumor suppressor genes have been identified, making possible the development of novel therapeutic agents with a well-defined, focused target and immunotherapy as an additional therapeutic option for this pathology.
This review is intended to provide a straightforward guide to the tumor architecture (immunohistochemistry and molecular analysis) of lung cancer in its most common types.
Article visits 3526 | PDF visits 10663
Downloads
- Bade BC, De la Cruz CS. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med. 2020 Mar;41(1):1-24. doi:10.1016/j.ccm.2019.10.001
- Mazzone PJ, Silvestri GA, Patel S, Kanne JP, Kinsinger LS, Wiener RS, et al. Screening for lung cancer: CHEST guideline and expert panel report. Chest. 2018 Apr;153(4):954-985. doi: 10.1016/j.chest.2018.01.016.
- Thomas NA, Tanner NT. Lung Cancer Screening: Patient Selection and Implementation. Clin Chest Med. 2020 Mar;41(1):87-97. doi: 10.1016/j.ccm.2019.10.006
- Casallas AG. Datos en archivo. Febrero 28 de 2017.
- Salehi-Rad R, Li R, Paul MK, Dubinett SM, Liu B. The Biology of Lung Cancer: Development of More Effective Methods for Prevention, Diagnosis, and Treatment. Clin Chest Med. 2020 Mar;41(1):25-38. doi: 10.1016/j.ccm.2019.10.003
- Travis WD. Lung Cancer Pathology: Current Concepts. Clin Chest Med. 2020 Mar;41(1):67-85. doi: 10.1016/j.ccm.2019.11.001.
- Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. WHO Panel. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015 Sep;10(9):1243-1260. doi: 10.1097/JTO.0000000000000630.
- Zheng M. Classification and Pathology of Lung Cancer. Surg Oncol Clin N Am. 2016 Jul;25(3):447-68. doi: 10.1016/j.soc.2016.02.003.
- Uchida A, Samukawa T, Kumamoto T, Ohshige M, Hatanaka K, Nakamura Y, et al. Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma. BMC Pulm Med. 2017 Dec 12;17(1):195. doi: 10.1186/s12890-017-0534-z.
- Konopka KE. Diagnostic Pathology of Lung Cancer. Semin Respir Crit Care Med. 2016 Oct;37(5):681-688. doi: 10.1055/s-0036-1592172.
- Naylor EC, Desani JK, Chung PK. Targeted Therapy and Immunotherapy for Lung Cancer. Surg Oncol Clin N Am. 2016 Jul;25(3):601-9. doi: 10.1016/j.soc.2016.02.011.
- Mazzone PJ, Sears CR, Arenberg DA, Gaga M, Gould MK, Massion PP. Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An official American Thoracic Society Policy Statement. Respir Crit Care Med. 2017 Oct 1;196(7):e15-e29. doi: 10.1164/rccm.
- Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011 Feb;6(2):244-85. doi: 10.1097/JTO.0b013e318206a221.
- Moon EK, Langer CJ, Albelda SM. The Era of Checkpoint Blockade in Lung Cancer: Taking the Brakes Off the Immune System. Ann Am Thorac Soc. 2017 Aug;14(8):1248-1260. doi: 10.1513/AnnalsATS.201702-152FR.
- Sears CR, Mazzone PJ. Biomarkers in Lung Cancer. Clin Chest Med. 2020 Mar;41(1):115-127. doi: 10.1016/j.ccm.2019.10.004.
- Wortzel I, Seger R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer. 2011 Mar;2(3):195-209. doi: 10.1177/1947601911407328.
- Al Nasrallah N, Sears CR. Biomarkers in Pulmonary Nodule Diagnosis: Is It Time to Put Away the Biopsy Needle? Chest. 2018 Sep;154(3):467-468. doi: 10.1016/j.chest.2018.04.032.
- Silvestri GA, Vachani A, Whitney D, Elashoff M, Porta Smith K, Ferguson JS, et al. A Bronchial Genomic Classifier for the Diagnostic Evaluation of Lung Cancer. N Engl J Med. 2015 Jul 16;373(3):243-51. doi: 10.1056/NEJMoa1504601.
- Silvestri GA, Tanner NT, Kearney P, Vachani A, Massion PP, Porter A, et al. PANOPTIC Trial Team. Assessment of Plasma Proteomics Biomarker's Ability to Distinguish Benign from Malignant Lung Nodules: Results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) Trial. Chest. 2018 Sep;154(3):491-500. doi: 10.1016/j.chest.2018.02.012.