Skip to main navigation menu Skip to main content Skip to site footer

Variabilidad de pruebas de función pulmonar en niños sanos, asmáticos y con enfermedad pulmonar crónica

Variabilidad de pruebas de función pulmonar en niños sanos, asmáticos y con enfermedad pulmonar crónica




Section
Research article

How to Cite
Rodríguez Martínez C, Sossa MP, Cortez E, Mallol J. Variabilidad de pruebas de función pulmonar en niños sanos, asmáticos y con enfermedad pulmonar crónica.
rev. colomb. neumol. [Internet]. 2004 Sep. 1 [cited 2025 Jun. 2];16(3):169-75. Disponible en: https://doi.org/10.30789/rcneumologia.v16.n3.2004.1079

Dimensions
PlumX
license
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Ninguna publicación, nacional o extranjera, podrá reproducir ni traducir sus artículos ni sus resúmenes sin previa autorización escrita del editor; sin embargo  los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna.

Carlos Rodríguez Martínez
    Mónica Patricia Sossa
      Eliana Cortez
        Javier Mallol

          Carlos Rodríguez Martínez,

          Neumólogo Pediatra Hospital Santa Clara - Organización Sanitas Internacional.


          Mónica Patricia Sossa,

          Residente de segundo año de Medicina Interna Universidad El Bosque - Hospital Santa Clara.


          Eliana Cortez,

          Neumóloga Pediatra Departamento de Medicina Respiratoria Infantil, Hospital CRS El Pino, Universidad de Santiago de Chile, Santiago de Chile.


          Javier Mallol,

          Director del Departamento de Medicina Respiratoria Infantil, Facultad de Ciencias Médicas, Hospital CRS El Pino, Universidad de Santiago de Chile, Santiago de Chile.


          Introduction. Comparison of sequential pulmonary function tests in the same individual can be used to assess progression of a disease, response to therapy, or response to bronchial provocation. These types of comparisons require an understanding of the factors influencing the variability normally seen in repeat measurements of lung function. To avoid misleading conclusions about changes in serial measurements, the degree of variability of each test must be considered in their interpretation.

          Objective. The purpose of this study was to examine the degree of intrasubject variability for pulmonary function testing in healthy, asthmatic and children with chronic lung disease (CLD). The tests examined were spirometry, and body plethysmograph determination of lung volumes.

          Materials and methods.We studied 21 healthy children, 19 asthmatic patients and 19 children with CLD. Testings were done on nine occasions, three times within a day, on three different days, over a period of two months. Short-term variability was defined as the coefficient of variation (CV) for the six measurements made on days 1 and 2, and the long-term variability as the CV of the nine measurements made on days 1, 2 and 3.

          Results. Based on the CV measures, children with CLD had significantly more variability in all spirometric values compared with healthy and asthmatic children, except for PEF (P < 0.05). Children with CLD had a significantly lower CV for ITGV and FRC compared with the other two groups (P < 0.05). Asthmatic children had a significantly higher CV for RV and RV/TLC compared with healthy and children with CLD (P < 0.05). We propose a method to consider changes in pulmonary function tests as significant.

          Conclusions. The degree of variability and an estimate of the per cent change for significance of spirometric and plethysmographic tests must be considered in the interpretation of data to avoid misleading conclusions. The variability of spirometric pulmonary function data in healthy subjects was smaller than that for patients with pulmonary disease, so larger changes for significance were required in patients with pulmonary disease than in normal subjects, so larger changes for significance were required in patients with pulmonary disease than in normal subjects.


          Article visits 9 | PDF visits 12


          Downloads

          Download data is not yet available.
          1. McCarthy D, Craig D, Cherniack R. Intraindividual variability in maximal expiratory flow-volume and closing volume in asymptomatic subjects. Am Rev Respir Dis 1975; 112: 407-411.
          2. Nickerson B, Lemen R, Gerdes C. Within-subject variability and per cent change for significance of spirometry in normal subjects and in patients with cystic fibrosis. Am Rev Respir Dis 1980; 122:859-866.
          3. Knudson R, Slatin R, Lebowitz M, et al. The maximum expiratory flow-volume curve. Normal standards, variability and effects of age. Am Rev Respir Dis 1976; 13:587-600.
          4. Cooper P, Robertson C, Hudson 1, et al. Variability of pulmonary function tests in Cystic Fibrosis. Pediatr Pulmonol 1990; 8:16-22
          5. Hutchinson A, Erben A, McLennan L, et al. Intrasubject variability of pulmonary function testing in healthy children. Thorax 1981; 36:370-377.
          6. Studnicka M, Frischer T, Neumann M. Determinants of reproducibility of lung function tests in children aged 7 to 10 years. Pediatr Pulmonol 1998; 25:238-243.
          7. Asher M, Keil U, Anderson H, et al. International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J 1995; 8:483-491.
          8. American Thoracic Society. Standarization of spirometry: 1194 update.Am J Respir Crit Care Med 1995; 152: 1107-1136.
          9. Enright P, Connett J, Kanner R, et al. Spirometry in the Lung Health Study: II. Determinants of short-term intraindividual variability. Am J Respir Crit Care Med 1995;151:406-411.
          10. Ng'anga'a L, Ernst P, Jaakkola M, et al. Spirometric lung function-distribution and determinants of test failure in a Young adult population. Am Rev Respir Dis 1992; 145:48-52.
          11. Eisen E, Oliver L, Christiani D, et al. Effects of spirometry standards in two occupational cohorts. Am Rev Respir Dis 1985; 132: 120-124.
          12. Mead J, Tumer J, Macklem P, et al. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol 1967; 22:95-101.
          13. Leith D, Mead J. Mechanisms determining residual volume of the lungs in normal subjects. J Appl Physiol 1967;23:221-227.
          14. Black L, Offord K, Hyatt R. Variability in the maximal expiratory flow volume curve in asymptomatic smokers and nonsmokers. Am Rev Respir Dis 1974; 110: 282-292.
          15. Gaynard P, Orehek J, Grimand C, et al. Bronchoconstrictor effects of a deep inspiration in patients with asthma. Am Rev Respir Dis 1975; 111: 433-439.
          16. Quanjer P, Stocks J, Polgar G, et al. Compilation of reference values for lung function measurements in children. Eur Respir J 1989; 9, Suppl: 1848-261s.
          17. Sobol B. Some problems encountered in the evaluation of bronchodilator therapy. Chest 1978; 73,Suppl: 991-992.
          18. Light R, Conrad S, George R. Clinical significance of pulmonary function test for evaluating the effects of bronchodilator therapy. Chest 1977; 72: 512-516.
          19. Leeder S, Swan A, Peat J, et al. Maximum expiratory flowvolume curves in children: changes with growth and individual variability. Bull Eur Physiopatho! Respir 1977; 13:249-260
          20. Cochrane G, Prieto F, Clark T. Intrasubject variability of maximal expiratory flow volume curve. Thorax 1977; 32:171-176.
          21. Dawson A. Reproducibility of spirometric measurements in normal subjects. Am Rev Respir Dis 1966; 93:264-268.
          22. Aschrift M, Clement J, Peeters R, et al. Maximal expiratory and inspiratory flows in patients with chronic obstructive pulmonary disease: influence of bronchodilation. Am Rev Respir Dis 1969; 100: 147-152.
          23. Cogswell J, Hull D, Milner A, et al. Lung function in childhood.I. The forced expiratory volumes in healthy children using a spirometer and reverse plethysmograph. Br J Dis Chest 1975;69: 40-50.
          24. Cotes J, Dabbs J, HallA, et al. Sitting height, fat free mass and body fat as a reference variables for lung function in healthy British children; comparison with stature Ann Hum Biol 1979; 6:307-314.
          25. Engstrom |, Karlberg P, Swarts C. Respiratory studies in children.IX. Relationships between mechanical properties of lungs, lung volumes, and ventilatory capacity in children 7-15 years of age. Acta Paeddiatr 1962; 51: 68-80.
          26. Scharder P, Quanjer P, van Zomeren B, et al. Selection of variables from maximal expiratory flow-volume curves. Bull Eur Physiopathol Respir 1983; 19:43-49.
          27. Cogswell J, Hull D, MilnerA, et al. Lung function in childhood. II. Thoracic gas volumes and helium functional residual capacity measurements in healthy children. Br J Dis Chest 1975; 69: 118-124.
          28. DeGroodt E, Quanjer P, Wise M. Short and long term variability of indices from the single and multiple breath nitrogen test. Bull Eur Physiopathol Respir 1984; 20: 271-277.
          29. DeMuth G, Howatt W, Hill B. Lung volumes. Paediatrics 1965; 35:162-176.
          30. Engstrom |, Karlberg P, Kraepelin S. Respiratory studies in children. I. Lung volumes in healthy children, 6-14 years of age. Acta Paediatr 1956; 45:277-294.
          31. Morse M, Schiutz F, Cassels D. The lung volume and its subdivisions in normal boys 10-17 years of age. J Clin Invest 1952; 31: 380-391.
          32. Von der Hardt H, Nowak-Beneke R. Lung volumes in healthy boys and girls, 6-15 years of age. Lung 1976; 154: 51-63.
          33. Zapletal A, Motoyama A, van de Woestijne K, Hunt V, et al. Maximum expiratory flow-volume curves and and airway conductance in children and adolescents. J Appl Physiol 1969; 26: 308-316.
          Sistema OJS 3.4.0.7 - Metabiblioteca |