Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Determinación por espirometría de volúmenes y capacidades pulmonares en sujetos exfumadores

Pulmonary volumes and capacities determined by spirometry in ex-smokers



Abrir | Descargar


Sección
Artículos de investigación

Cómo citar
Determinación por espirometría de volúmenes y capacidades pulmonares en sujetos exfumadores.
rev. colomb. neumol. [Internet]. 2021 Jul. 6 [cited 2024 Dec. 22];32(2):10-9. Disponible en: https://doi.org/10.30789/rcneumologia.v32.n2.2020.528

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Ninguna publicación, nacional o extranjera, podrá reproducir ni traducir sus artículos ni sus resúmenes sin previa autorización escrita del editor; sin embargo  los usuarios pueden descargar la información contenida en ella, pero deben darle atribución o reconocimiento de propiedad intelectual, deben usarlo tal como está, sin derivación alguna.


INTRODUCCIÓN: las enfermedades respiratorias son uno de los principales problemas de salud pública para la economía mundial. Uno de los principales factores de riesgo es el tabaquismo. Las pruebas de función pulmonar, como la espirometría, nos permiten determinar las alteraciones del sistema respiratorio y su evolución a partir de valores cuantitativos.

OBJETIVO: determinar mediante espirometría los volúmenes y las capacidades pulmonares de sujetos exfumadores.

MATERIALES Y MÉTODOS: estudio transversal, descriptivo y observacional con 848 sujetos de ambos géneros, mayores de 16 años, exfumadores de más de un año de abandono, con una edad promedio de 36,62 ± 10,15 (hombres: 36,62 ± 10,13 frente a mujeres: 40,36 ± 15,86). La función pulmonar se determina por espirometría con el equipo Nuevo Spirobank II®, que permite determinar, entre otros, la capacidad vital forzada (FVC), la capacidad vital (VC) y el volumen máximo espirado en el primer segundo de una espiración forzada (FEV1).

RESULTADOS: 848 sujetos, el 3,3 % mujeres y el 96,7% hombres, con una edad de 36,62 ± 10,15 años, talla de 169,71 ± 6,77 cm y un peso de 72,66 ± 12,56. La abstinencia del tabaco fue de 4,34 ± 5,27 años, en un consumo diario relativo de 5,76 ± 7,28 cigarrillos por día. La relación FEV1/FVC fue de 87,28 %, el FEV1 de 3,81 L ± 0,02 y la FVC de 4,38 L ± 0,02. Del total de los sujetos, 754 (88,92 %) tenían valores de FEV1/FVC normales y 54 (6,37%) presentaban obstrucción pulmonar leve tras haber dejado el hábito de consumo de tabaco.

CONCLUSIONES: el consumo del tabaco reduce los parámetros de las capacidades y los volúmenes pulmonares en personas, independientemente de las características antropométricas. El abandono del hábito tabáquico puede prevenir las alteraciones en la función pulmonar.


Visitas del artículo 2515 | Visitas PDF 1862


Descargas

Los datos de descarga todavía no están disponibles.
  1. Dempsey TM, Scanlon PD. Pulmonary Function Tests for the Generalist: A Brief Review. Mayo Clin Proc. 2018;93(6):763-771. doi:10.1016/j.mayocp.2018.04.009.
  2. Dancer R, Thickett, D. Assessment of pulmonary function. Medicine, 2016;44(4):226–9. doi:10.1016/j.mpmed.2016.02.007
  3. World Health Organization [Internet]. Geneva: WHO; 2007.Global surveillance, prevention and control of chronic respiratory diseases. A comprehensive approach. Disponible en:http://www.who.int/gard/publications/GARD_Manual/en/
  4. Burney PG, Patel J, Newson R, Minelli C, Naghavi M. Global and regional trends in COPD mortality, 1990-2010. Eur Respir. 2015;45(5):1239–1247. doi:10.1183/09031936.00142414
  5. World Health Organization [Internet]. Luxemburgo: World Health Organization; 2015. WHO report on the global tobacco epidemic, 2015: raising taxes on tobacco. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/178574/9789240694606_eng.pdf;jsessionid=1F005E6C35C8001D3B8EE060C75B0545?sequence=1
  6. Talaminos-Barroso A, Márquez-Martín E, Roa-Romero LM, Ortega-Ruiz F. Factores que afectan a la función pulmonar: una revisión bibliográfica. Arch Bronconeumol. 2018;54(6):327–32. doi:10.1016/j.arbres.2018.01.030
  7. Scanlon PD. Respiratory function: mechanisms and testing. En: Goldman L, Schafer AI, editores. Goldman-Cecil Medicine. 25.a ed. Philadelphia, PA: Elsevier Saunders. 2016. p. 539-45.
  8. Álvarez FJ, Barchilón V, Casas F, Compán MV, Entrenas LM, Fernández J, et al. Documento de Consenso sobre la espirometría en Andalucía. SEMERGEN. 2009;35(9):457-68. doi:10.1016/S1138-3593(09)72845-X
  9. Hwang JW, Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 2014;28(1):176–94.doi:10.1096/fj.13-232629
  10. Mottram C. Ruppel’s Manual of Pulmonary Function Testing.10.a edición. Mary-land Heights, Missouri: Mosby; 2012. p. 3.
  11. Farha S, Asosingh K, Laskowski D, Licina L, Sekiguchi H, Sekigushi H, et al. Pulmonary gas transfer related to markers of angiogenesis during the menstrual cycle. J Appl Physiol, 2007;103(5):1789–95. doi:10.1152/japplphysiol.00614.2007
  12. Löfstedt H, Hagström K, Bryngelsson IL, Holmström M, Rask-Andersen A. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry. Ups J Med Sci. 2017;122(2):78–84. doi:10.1080/03009734.2017.1285836
  13. Bowatte G, Lodge CJ, Knibbs LD, Lowe AJ, Erbas B, Dennekamp M, et al. Traffic related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. J Allergy Clin Immunol. 2017;139(1):122–9.e1. doi:10.1016/j.jaci.2016.05.008
  14. Rice MB, Li W, Wilker EH, Gold DR, Schwartz J, Koutrakis P, et al. Extreme temperatures and lung function in the Framingham Heart Study. A59 Epidemiology of Airways and Chronic Lung Disesases. 2017;A2042-A2042.12.
  15. Kobayashi S, Hanagama M, Yamanda S, Satoh H, Tokuda S, Kobayashi M, et al. Impact of a large-scale natural disasteron patients with chronic obstructive pulmonary disease: The aftermath of the 2011 Great East Japan Earthquake. RespirInvestig. 2013;51(1):17–23. doi:10.1016/j.resinv.2012.10.004
  16. Donnelly PM, Yang TS, Peat JK, Woolcock AJ. What factors explain racial differences in lung volumes? Eur Respir J.1991;4(7):829–38.
  17. Barone-Adesi F, Dent JE, Dajnak D, Beevers S, Anderson HR, Kelly FJ, et al. Long-term exposure to primary traffic pollutants and lung function in children: Cross-sectional study and meta-analysis. PLoS One. 2015;10(11):e0142565. doi:10.1371/journal.pone.0142565
  18. Tabak C, Spijkerman AM, Verschuren WM, Smit HA. Does educational level influence lung function decline (Doe-tinchem Cohort Study)? Eur Respir J. 2009;34(4):940–7.doi:10.1183/09031936.00111608
  19. Lange P, Marott JL, Vestbo J, Ingebrigtsen TS, Nordestgaard BG. Socioeconomic status and prognosis of COPD in Denmark. COPD. 2014;11(4):431–7. doi:10.3109/15412555.2013.869580
  20. Dane DM, Lu H, Dolan J, Thaler CD, Ravikumar P, Hammond KA, et al. Lung function and maximal oxygen uptake indeer mice (Peromyscus maniculatus) bred at low altitude and reacclimatized to high altitude. FASEB J. 2016;30,1297.51297. doi: 10.1096/fasebj.30.1_supplement.1297.5
  21. Mehari A, Afreen S, Ngwa J, Setse R, Thomas AN, PoddarV, et al. Obesity and Pulmonary Function in African Americans. PLoS One. 2015;10:e0140610. doi:10.1371/journal.pone.0140610
  22. Shan X, Liu J, Luo Y, Xu X, Han Z, Li H. Relationship between nutritional risk and exercise capacity in severe chronicobstructive pulmonary disease in male patients. Int J Chron Obstruct Pulmon Dis. 2015;10:1207–12. doi:10.2147/COPD.S82082
  23. Lazovic B, Mazic S, Suzic-Lazic J, Djelic M, Djordjevic-Saranovic S, Durmic T, et al. Respiratory adaptations in different types of sport. Eur Rev Med Pharmacol Sci.2015;19(12):2269–74.
  24. Hoesein FA, Jong PA, Lammers JW, Mali WP, Mets OM,Schmidt M, et al. Contribution of CT quantified emphyse- ma, air trapping and airway wall thick-ness on pulmonary function in male smokers with and without COPD. COPD.2014;11(5):503–9. doi:10.3109/15412555.2014.933952
  25. Gouna G, Rakza T, Kuissi E, Pennaforte T, Mur S, StormeL. Positioning effects on lung function and breathing pattern in premature newborns. J Pediatr. 2013;162(6):1133-7.doi:10.1016/j.jpeds.2012.11.036
  26. Standardization of Spirometry, 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):11071136. doi:10.1164/ajrccm.152.3.7663792
  27. Clotet J, Gómez X, Ciria C, Albalad JM. La espirometría es un buen método para la detección y el seguimiento de la EPOC en fumadores de alto riesgo en atención primaria. Arch Bronconeumol. 2004;40(4):155-9. doi: 10.1016/S03002896(04)75495-2
  28. Reyes D, García M, Simón P, Pérez K. Repercusión del hábito de fumar en la función pulmonar de fumadores activos. Rev Cub Med Mil. 2011;40(3-4), 227-33.
  29. Muñoz-Pérez MJ, Palafox D, Palafox J, Vichido-Luna MA, Espinosa N, Rivas-Chávez A. Determinación de valores espirométricos en jóvenes fumadores y no fumadores. Med Int Mex. 2013;29(6):553-557.
  30. Martínez-López E, Díaz PA. Tabaquismo y disminución de la función pulmonar en hombres y mujeres adultos. Salud(i) ciencia. 2013;20(3):246-250.
  31. Puhan MA, García-Aymerich J, Frey M, ter Riet G, Anto JM, Agusti AG, et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet.2009;374(9691):704-11. doi:10.1016/S0140-6736(09)61301-5
  32. Soler-Cataluña JJ, Martínez-García MA, Sánchez LS, Tordera MP, Sánchez PR. Severe exacerbations and BODE index: two independent risk factors for death in male COPD patients. Respir Med. 2009;103(5):692-9. doi:10.1016/j.rmed.2008.12.005
  33. Schembri S, Anderson W, Morant S, Winter J, Thompson P,Pettitt D, et al. A predictive model of hospitalisation and death from chronic obstructive pulmonary disease. Respir Med. 2009;103(10):1461-7. doi:10.1016/j.rmed.2009.04.021.
Sistema OJS 3.4.0.7 - Metabiblioteca |